1. [12 points] Consider the graph of j'(x) given here. Note that this is not the graph of j(x).

For each of (a)-(f) below, list all x-values labeled on the graph which satisfy the given statement in the blank provided. If the statement is not true at any of the labeled x-values, write "NP". You do not need to show your work. No partial credit will be given on each part of this problem.

→Slope of T.L. is the greatest at P.O.I.

The graph of the derivative of a function g is shown below. Use the graph of g' to answer the following questions about g. [NOTE: The graph of g is not shown.]

(a) Where does have stationary points? X=1,5.5,9
(b) Where does have local maxima? Local minima? AAX: X=5.5 MIN:X=9

(c) The graph of g' has a local maximum at x = 3.8 and a local minimum at x = 7.4. What do these facts say about the graph of g?

(d) Is \mathfrak{g} concave up or concave down at x = 5? At x = 8? Justify your answers.

Concave down at x = 5 b/c the 2^{nd} derivative is negative.

Concave up at x = 8 b/c the 2^{nd} derivative is positive.

Unit 6 Extra Practice

3. Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.

3. Let f be the function with derivative defined by $f'(x) = x^3 - 4x$. At which of the following values of x does the graph of y have a point of inflection?

(A) 0 (B)
$$\frac{2}{3}$$
 (C) $\frac{2}{\sqrt{3}}$ (D) $\frac{4}{3}$ (E) 2
$$f''(x) = 3x^2 - 4$$

1. When is the graph of $f(x^3) = \frac{1}{6}x^4 - \frac{7}{6}x^3 + \frac{5}{2}x^2 - 8x + 12 \frac{3}{2}x^2 + 6x + 12 \frac{3}{2}x^2 + 12 \frac{3}{2}x$

A)
$$x < 1 \text{ or } x > \frac{5}{2}$$

B)
$$1 \le x \le \frac{5}{2}$$

(c)
$$x < \frac{1}{2} \text{ or } x > 5$$

D)
$$\frac{1}{2} < x < 5$$

$$f'(x) = \frac{2}{3}x^3 - \frac{7}{2}x^2 + 5x - 8$$

$$f'(x) = \frac{2}{3}x^3 - \frac{2}{2}x^2 + 5x - 8$$

 $f''(x) = \frac{2}{3}x^3 - 7x + 5$
 $0 = (2x - 5)(x - 1)$
 $x = \frac{5}{3}x = 1$

- 3. Let g be the function defined by $g(x) = x^4 4x^3$. How many relative extrema does g have:
 - (A) Zero (B) One (C) Two (D) Thre

$$5(x) = 4x^3 + 12x^2$$

 $0 = 4x^2(x+3)$

